Quantified Self Movement

From SI410
Jump to: navigation, search

The Quantified Self (QS) refers to individuals that engage in keeping track of their daily activities systematically, in an attempt to better understand their bodies and their needs, ultimately seeking fulfillment. The data tracked can take many forms: it can be biological, physical, behavioral, or environmental information [1]. The QS movement relies on different self‐tracking tools, such as bracelets, smartwatches, sensors, fitness trackers or any other device that can measure biological attributes. A branch of the Internet of Things, QS focuses on the data generated by human bodies[2]. The movement became more structured as mobile apps dedicated to keeping track of sleep, mood, health related issues, and smart watches, like Fitbit, became available, and there are now international communities of self-trackers that focus on data sharing.

Founding and Origins

The Quantified Self was founded in 2007 by Gary Wolf and Kevin Kelly, two editors of Wired magazine, who felt that the rise of self-tracking in their San Francisco environment deserved a website and a place where enthusiasts could meet, share their self-tracking experiences, and discuss their findings. Since then, the group has expanded internationally and currently includes over 60,000 members across the globe, organized in over 200 groups that hold regular meetings, as well as two international conferences a year[3]. The explicit motto of the Quantified Self movement, branded as a tagline on its official website, is “self-knowledge through numbers."

A flowchart depicting the various aspects of the quantified self movement and the tools used to achieve its outcomes.

Self-Tracking Practices

Self-tracking practices include the use of personal data-gathering apps, wearable devices, and data analysis tools to record patterns from daily activities, as well as the organization, visualization, and analysis of this data. Many of the most popular self-tracking apps and devices focus on health, fitness, productivity, and time management. While some self-trackers develop their own tools for data collection and analysis, the most popular self-tracking activities are conducted using popular apps and platforms such as Apple HealthKit, Fitbit, GoogleFit, RunKeeper (health and fitness tracking), Clue (menstruation tracking), MoodPanda (mental health tracking), RescueTime, Toggl (productivity tracking), and Life Cycle (time and activity tracker). Health and fitness self-tracking covers a broad range of categories, such as hours slept, calories expended, food and water consumed, and steps taken. Many apps also enable integration between different platforms, thus allowing self-trackers to analyze correlations between, for example, fitness levels and work productivity.

Benefits of Self Tracking

There are many reasons users are attracted to this movement. The benefits of using health apps can be vast. They allow users to easily set and track goals, users can track activity levels to increase their times and reps, and users are granted the ability to see progress clearly through raw data.[4] In the health field, there is evidence that trackers have helped people improve eating habits, increase exercise, monitor personal insulin levels, and monitor fertility rates.[5] Outside of health tracking, tools like productivity trackers can add value to users’ lives. They allow users to track how they have spent their time and look at patterns in their workflow in order to improve future habits. Users in this movement can fall into a wide category of trackers aimed at monitoring the human experience and self-improvement.

Koyan Kostov's self-tracking dashboard measuring steps, weight, places, sleep, etc.

Self Tracking Communities

r/QuantifiedSelf subreddit landing page.[6]

There are several self tracking communities on the Internet for those interested in sharing how they self track and the results of their tracking. Many of these communities have areas where users can share their data in detailed reports or summaries of what they found. Reddit and QuantifiedSelf.com both are examples of these communities.


Reddit, a social media platform with various sub-communities called 'subreddits,' has a community space for self trackers. This subreddit, called r/QuantifiedSelf, gives a space for self trackers to ask questions about tracking tools and a place to celebrate their achievements.[7]

The top post on this subreddit features a user who tracked everything they did for a year, including what they ate, their exercise, how much they slept, vitals, and their sense of well-being. This tracking resulted in over 500,000 data points , tracked in a Google Sheets, and 10 important discoveries in the user found in their everyday behaviors.[8] Many of the other top posts on this subreddit have tracked similar items, with others including detailed reports on heart rate, mood, anxiety levels, and even the number of burps per day during the COVID-19 pandemic.[7]


Another community for is the QuantifiedSelf.com community, which has been collaborating on tools, events, and research for those interested in self tracking since 2011. Their website contains information on various physical trackers, applications, and events following the self tracker movement. In addition, users can "show and tell" their own experiences with self tracking.[9]

One "show and tell" example in this community was a project carried out by a PhD student. This student traveled to Mt. Everest, tracking his drop in blood oxygenation and the effect of acclimatization as he made his way up the mountain. His goal was to discover why some people feel better at higher elevations than others, and encouraged other hikers to also share their data.[10]

Ethics of the Quantified Self

Dataveillance and Privacy

Digitized self-tracking is a form of dataveillance, or the watching of people using technologies that generate data, increasingly in digitized formats [11]. In the age of Quantified Self devices and analytics, informed consent for end users is a key ethical concern. Massive databases provide exhaustive pictures of users’ biometric statistics mapped to their geocoded locations. These reserves of information are often siloed, as in the data exists in isolation. This means that only certain subsets of people within a company can see the data.[12] This often results in the company’s data practices being hidden from the public[13]. Additionally, the QS community’s fondness for gamification and sometimes competition brings individuals’ data into intertwined relationships and configurations. The QS movement is driven by an enthusiastic desire to remove constraints to ubiquitous tracking, which could appear to conflict with the core principles of classic data privacy frameworks[14].

Personal Data Security

There are many significant issues concerning the security and privacy of the personal information that self-trackers upload to apps and other software. Data security is becoming increasingly more difficult to protect as ‘smart’ online objects connect with each other and share data, and as personal data is uploaded to cloud computing archives in increasingly large amounts[15]. Hackers can gain access to this kind of personal data more easily than other datasets. This is because they can access the data at two key points: when data is being transmitted from one location to another, such as from a personal device to a cloud computing database; and when data is stored in databases[16]. If strong data encryption and authentication protocols are not employed, hackers are able to gain access to personal data more readily.

Health and Wellbeing Issues

Since quantified self tracking is largely used among health and wellness industries, there are significant dangers in self tracking practices. Users are put at risk for harmful effects on their own wellbeing. With all this health data in the hands of the patient, many users have the ability to come up with a self diagnosis of their own conditions, based on potentially inaccurate apps.[17] The New England Journal of Medicine published an article explaining the common issues with health app market regulation. Some of these apps are made to allow users to measure their own swollen joints for patients suffering from arthritis. Unfortunately, this app measurement error margin is about 50%, meaning this self quantification could be wildly inaccurate. This would misinform users, and allow them to make inaccurate judgements about their physical state of health. Another app in the study measured insulin doses for those with diabetes. While the self tracking mobile option would be helpful to those with diabetes, the app also had a tendency to offer inaccurate insulin dose recommendations, which can cause physical harm to these ill-advised patients.[18] Additionally, the health app market includes food trackers and calorie burn trackers, which encourage users to monitor their food intake and calorie burn. Constant personal monitoring of one’s intake can cause too much stress on one’s wellbeing and result in disordered eating habits.[19] Wearable tracking has also been used in workplace environments to monitor the productivity and happiness of workers. While this tracking system allows companies to monitor health and movement among their workers, it is still potentially harmful because it doesn't take into account the workers' experiences during the day. Depression and anxiety have been linked to the overly invasive work environments with productivity trackers involved.[20]

Communal Self Tracking

Communal self-tracking involves the consensual sharing of a tracker's personal data with other people, as a central feature of self-tracking practice. Notions of privacy are challenged and transformed by the interplay of personal information about the individual that is generated via self-tracking and the movement of this information into social media sites, into dedicated self-tracking platforms, or simply into the archives of the computing cloud, where it becomes open to access and can be seen by others. When self-tracking practices involve collecting and recording information on other people, then they may also involve surveillance, either carried out deliberately or emerging as an unintended outcome of using these technologies. Privacy Rights Clearinghouse points out that many of these health tracker apps are free so they depend on advertising for money.[21] This means they could be sharing personal data and usage data with advertisers that could be traced back to you. The use of digital self-tracking technologies blurs the spatial boundaries between public and private surveillance, bringing public surveillance into the domestic sphere but also often extending private surveillance out into public domains.

Exploitation of Self Tracking

The exploitation of people's personal information by second and third parties is significant because of the ways in which people's personal information has become valuable for third parties. The collection of personal data is now not only a mode of consensual, individually driven imperatives for self-improvement, but also an element of (sometimes illegal) commercial profiteering, population monitoring and governance. The movement of self-tracking cultures into commercial, managerial, and government domains combines the rationalities of biocapital with those of the digital data economy.[22] Biocapital involves the derivation of value from biological entities such as human bodies, while the digital data economy positions digital data objects as valuable. The burgeoning business of data harvesting and data brokering involves a process whereby companies are scraping the web for whatever they can find about people; in other words it involves the sale of the data that have been generated through the use of apps and other software.[23]

Responses and Resistance

The ontological issues surrounding the data privacy field are complex, however the stopgap solutions to these problems are relatively simple. While people can no longer escape being the subjects of dataveillance, they can to some extent make choices about the self-tracking practices in which they may engage and about the devices they decide to use. They may seek out developers and manufacturers who are responding to consumers' concerns about data privacy and security. There have also been calls for the use of the policy of ‘privacy by design’ when developing digital devices. These discussions refer to the notions of the ‘user-centric internet’ and ‘controlled computing’, where people's personal data will be protected by the judicious structuring of information systems engineering, above the demands of those who wish to profit from or otherwise use these data[24].


  1. Swan, M. (2013). The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery. Big Data, 1(2), 85-99. doi:10.1089/big.2012.0002
  2. Marcena, M. B., Wueest, C., & Lau, H. (2014, August 11). How safe is your quantified self? Retrieved March 25, 2021, from https://paper.bobylive.com/Meeting_Papers/BlackHat/Europe-2014/eu-14-Wueest-Quantified-Self-A-Path-To-Self-Enlightenment-Or-Just-A-Security-Nightmare-wp.pdf from Symantec System
  3. Show & Tell Projects Archive. (2016, April 14). Retrieved March 25, 2021, from https://quantifiedself.com/show-and-tell/?project=1121
  4. Bryant, K. (2021, March 24). Health Benefits to Using a Fitness App. Club Solutions Magazine. https://clubsolutionsmagazine.com/2015/10/health-benefits-to-using-a-fitness-app/.
  5. Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The Rise of Consumer Health Wearables: Promises and Barriers. PLOS Medicine. https://journals.plos.org/plosmedicine/article?id=10.1371%2Fjournal.pmed.1001953.
  6. R/QuantifiedSelf subreddit landing page [Digital image]. (2021, April 16). Retrieved April 16, 2021, from https://www.reddit.com/r/QuantifiedSelf/
  7. 7.0 7.1 R/quantifiedself. (n.d.). Retrieved April 16, 2021, from https://www.reddit.com/r/QuantifiedSelf/
  8. Bechtel, M. (2019, April 18). I tracked every single thing i ate for a full year. here are 10 quick a-ha's. Retrieved April 16, 2021, from https://mikebechtel.medium.com/i-tracked-every-single-thing-i-ate-for-a-full-year-here-are-10-quick-a-has-2c259dd2f57b
  9. Homepage. (n.d.). Retrieved April 16, 2021, from https://quantifiedself.com/
  10. Sathirapongsasuti, F. (2017, August 9). Science with a Little Altitude [PPT]. QuantifiedSelf.com.
  11. Dijck, J. V. (2013). Disassembling Platforms, Reassembling Sociality. The Culture of Connectivity, 24-44. doi:10.1093/acprof:oso/9780199970773.003.0002
  12. Data silos 101: Definition, challenges and solutions. (2021, February). https://atlan.com/what-are-data-silos/.
  13. Lupton, D. (2013). The digitally engaged patient: Self-monitoring and self-care in the digital health era. Social Theory & Health, 11(3), 256-270. doi:10.1057/sth.2013.10
  14. Matarić, M. J. (2019). Human-Machine and Human-Robot Interaction for Long-Term User Engagement and Behavior Change. The 25th Annual International Conference on Mobile Computing and Networking. doi:10.1145/3300061.3300141
  15. Marcena, M. B., Wueest, C., & Lau, H. (2014, August 11). How safe is your quantified self? Retrieved March 25, 2021, from https://paper.bobylive.com/Meeting_Papers/BlackHat/Europe-2014/eu-14-Wueest-Quantified-Self-A-Path-To-Self-Enlightenment-Or-Just-A-Security-Nightmare-wp.pdf from Symantec System
  16. Ibid.
  17. Unintended consequences: The dark sides of quantifying selves. (2015, June 15). Retrieved March 26, 2021, from https://phoebevmoore.wordpress.com/2015/06/15/unintended-consequences-the-dark-sides-of-quantifying-selves/
  18. Is MyFitnessPal CAUSING EATING DISORDERS? (2018, April 05). Retrieved March 26, 2021, from https://aspirefitnessnj.com/is-myfitnesspal-causing-eating-disorders/
  19. Caddy, B. (2019, July 28). Do fitness trackers have an impact on eating disorders? TechRadar. https://www.techradar.com/news/do-fitness-trackers-have-an-impact-on-eating-disorders.
  20. Unintended consequences: The dark sides of quantifying selves. (2015, June 15). Retrieved March 26, 2021, from https://phoebevmoore.wordpress.com/2015/06/15/unintended-consequences-the-dark-sides-of-quantifying-selves/
  21. Mobile Health and Fitness Apps: What Are the Privacy Risks? Privacy Rights Clearinghouse. (2013). https://privacyrights.org/consumer-guides/mobile-health-and-fitness-apps-what-are-privacy-risks.
  22. Kitchin, R. (2011). Conceptualising Data. The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences, 3(11), 1-26. doi:10.4135/9781473909472.n1
  23. Lupton, D. (2013). The digitally engaged patient: Self-monitoring and self-care in the digital health era. Social Theory & Health, 11(3), 256-270. doi:10.1057/sth.2013.10
  24. Barrett, M. A., Humblet, O., Hiatt, R. A., & Adler, N. E. (2013). Big Data and Disease Prevention: From Quantified Self to Quantified Communities. Big Data, 1(3), 168-175. doi:10.1089/big.2013.0027.